skip to main content


Search for: All records

Creators/Authors contains: "Çatmabacak, Onur"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Observations of local star-forming galaxies (SFGs) show a tight correlation between their singly ionized carbon line luminosity ($L_{\rm [C\, \small {II}]}$) and star formation rate (SFR), suggesting that $L_{\rm [C\, \small {II}]}$ may be a useful SFR tracer for galaxies. Some other galaxy populations, however, are found to have lower $L_{\rm [C\, \small {II}]}{}/{}\rm SFR$ than local SFGs, including the infrared-luminous, starburst galaxies at low and high redshifts as well as some moderately star-forming galaxies at the epoch of re-ionization (EoR). The origins of this ‘$\rm [C\, \small {II}]$ deficit’ is unclear. In this work, we study the $L_{\rm [C\, \small {II}]}$-SFR relation of galaxies using a sample of z = 0 − 8 galaxies with M* ≈ 107 − 5 × 1011 M⊙ extracted from cosmological volume and zoom-in simulations from the Feedback in Realistic Environments (fire) project. We find a simple analytic expression for $L_{\rm [C\, \small {II}]}$/SFR of galaxies in terms of the following parameters: mass fraction of $\rm [C\, \small {II}]$-emitting gas ($f_{\rm [C\, \small {II}]}$), gas metallicity (Zgas), gas density (ngas) and gas depletion time ($t_{\rm dep}{}={}M_{\rm gas}{}/{}\rm SFR$). We find two distinct physical regimes: $\rm H_2$-rich galaxies where tdep is the main driver of the $\rm [C\, \small {II}]$ deficit and $\rm H_2$-poor galaxies where Zgas is the main driver. The observed $\rm [C\, \small {II}]$ deficit of IR-luminous galaxies and early EoR galaxies, corresponding to the two different regimes, is due to short gas depletion time and low gas metallicity, respectively. Our result indicates that the $\rm [C\, \small {II}]$ deficit is a common phenomenon of galaxies, and caution needs to be taken when applying a constant $L_{\rm [C\, \small {II}]}$-to-SFR conversion factor derived from local SFGs to estimate cosmic SFR density at high redshifts and interpret data from upcoming $\rm [C\, \small {II}]$ line intensity mapping experiments.

     
    more » « less
  2. ABSTRACT We introduce a suite of cosmological volume simulations to study the evolution of galaxies as part of the Feedback in Realistic Environments project. FIREbox, the principal simulation of the present suite, provides a representative sample of galaxies (∼1000 galaxies with $M_{\rm star}\gt 10^8\, M_\odot$ at z  = 0) at a resolution ($\Delta {}x\sim {}20\, {\rm pc}$ , $m_{\rm b}\sim {}6\times {}10^4\, M_\odot$ ) comparable to state-of-the-art galaxy zoom-in simulations. FIREbox captures the multiphase nature of the interstellar medium in a fully cosmological setting (L = 22.1 Mpc) thanks to its exceptionally high dynamic range (≳106) and the inclusion of multichannel stellar feedback. Here, we focus on validating the simulation predictions by comparing to observational data. We find that star formation rates, gas masses, and metallicities of simulated galaxies with $M_{\rm star}\lt 10^{10.5-11}\, M_\odot$ broadly agree with observations. These galaxy scaling relations extend to low masses ($M_{\rm star}\sim {}10^7\, M_\odot$ ) and follow a (broken) power-law relationship. Also reproduced are the evolution of the cosmic HI density and the HI column density distribution at z ∼ 0–5. At low z , FIREbox predicts a peak in the stellar-mass–halo-mass relation but also a higher abundance of massive galaxies and a higher cosmic star formation rate density than observed, showing that stellar feedback alone is insufficient to reproduce the properties of massive galaxies at late times. Given its high resolution and sample size, FIREbox offers a baseline prediction of galaxy formation theory in a ΛCDM Universe while also highlighting modelling challenges to be addressed in next-generation galaxy simulations. 
    more » « less
    Free, publicly-accessible full text available May 2, 2024
  3. ABSTRACT

    The concurrent growth of supermassive black holes (SMBHs) and their host galaxies remains to be fully explored, especially at high redshift. While often understood as a consequence of self-regulation via AGN feedback, it can also be explained by alternative SMBH accretion models. Here, we expand on previous work by studying the growth of SMBHs with the help of a large suite of cosmological zoom-in simulations (MassiveFIRE) that are part of the Feedback in Realistic Environments (FIRE) project. The growth of SMBHs is modelled in post-processing with different black hole accretion models, placements, and merger treatments, and validated by comparing to on-the-fly calculations. Scaling relations predicted by the gravitational torque-driven accretion (GTDA) model agree with observations at low redshift without the need for AGN feedback, in contrast to models in which the accretion rate depends strongly on SMBH mass. At high redshift, we find deviations from the local scaling relations in line with previous theoretical results. In particular, SMBHs are undermassive, presumably due to stellar feedback, but start to grow efficiently once their host galaxies reach M* ∼ 1010M⊙. We analyse and explain these findings in the context of a simple analytic model. Finally, we show that the predicted scaling relations depend sensitively on the SMBH location and the efficiency of SMBH merging, particularly in low-mass systems. These findings highlight the relevance of understanding the evolution of SMBH-galaxy scaling relations to predict the rate of gravitational wave signals from SMBH mergers across cosmic history.

     
    more » « less
  4. null (Ed.)
    ABSTRACT A promising route for revealing the existence of dark matter structures on mass scales smaller than the faintest galaxies is through their effect on strong gravitational lenses. We examine the role of local, lens-proximate clustering in boosting the lensing probability relative to contributions from substructure and unclustered line-of-sight (LOS) haloes. Using two cosmological simulations that can resolve halo masses of Mhalo ≃ 109 M⊙ (in a simulation box of length $L_{\rm box}{\sim }100\, {\rm Mpc}$) and 107 M⊙ ($L_{\rm box}\sim 20\, {\rm Mpc}$), we demonstrate that clustering in the vicinity of the lens host produces a clear enhancement relative to an assumption of unclustered haloes that persists to $\gt 20\, R_{\rm vir}$. This enhancement exceeds estimates that use a two-halo term to account for clustering, particularly within $2-5\, R_{\rm vir}$. We provide an analytic expression for this excess, clustered contribution. We find that local clustering boosts the expected count of 109 M⊙ perturbing haloes by $\sim \! 35{{\ \rm per\ cent}}$ compared to substructure alone, a result that will significantly enhance expected signals for low-redshift (zl ≃ 0.2) lenses, where substructure contributes substantially compared to LOS haloes. We also find that the orientation of the lens with respect to the line of sight (e.g. whether the line of sight passes through the major axis of the lens) can also have a significant effect on the lensing signal, boosting counts by an additional $\sim 50{{\ \rm per\ cent}}$ compared to a random orientations. This could be important if discovered lenses are biased to be oriented along their principal axis. 
    more » « less
  5. ABSTRACT

    Galaxy sizes correlate closely with the sizes of their parent dark matter haloes, suggesting a link between halo formation and galaxy growth. However, the precise nature of this relation and its scatter remains to be understood fully, especially for low-mass galaxies. We analyse the galaxy–halo size relation (GHSR) for low-mass ($M_\star \sim 10^{7-9}\, {\rm M}_\odot$) central galaxies over the past 12.5 billion years with the help of cosmological volume simulations (FIREbox) from the Feedback in Realistic Environments (FIRE) project. We find a nearly linear relationship between the half-stellar mass galaxy size R1/2 and the parent dark matter halo virial radius Rvir. This relation evolves only weakly since redshift z = 5: $R_{1/2}\, [{\rm kpc}] = (0.053\pm 0.002)(R_{\rm vir}/35\, {\rm kpc})^{0.934\pm 0.054}$, with a nearly constant scatter $\langle \sigma \rangle = 0.084\, [{\rm dex}]$. While this ratio is similar to what is expected from models where galaxy disc sizes are set by halo angular momentum, the low-mass galaxies in our sample are not angular momentum supported, with stellar rotational to circular velocity ratios vrot/vcirc ∼ 0.15. Introducing redshift as another parameter to the GHSR does not decrease the scatter. Furthermore, this scatter does not correlate with any of the halo properties we investigate – including spin and concentration – suggesting that baryonic processes and feedback physics are instead critical in setting the scatter in the GHSR. Given the relatively small scatter and the weak dependence of the GHSR on redshift and halo properties for these low-mass central galaxies, we propose using galaxy sizes as an independent method from stellar masses to infer halo masses.

     
    more » « less
  6. null (Ed.)
    ABSTRACT The relation between infrared excess (IRX) and UV spectral slope (βUV) is an empirical probe of dust properties of galaxies. The shape, scatter, and redshift evolution of this relation are not well understood, however, leading to uncertainties in estimating the dust content and star formation rates (SFRs) of galaxies at high redshift. In this study, we explore the nature and properties of the IRX–βUV relation with a sample of z = 2–6 galaxies ($M_*\approx 10^9\!-\!10^{12}\, \mathrm{M}_\odot$) extracted from high-resolution cosmological simulations (MassiveFIRE) of the Feedback in Realistic Environments (FIRE) project. The galaxies in our sample show an IRX–βUV relation that is in good agreement with the observed relation in nearby galaxies. IRX is tightly coupled to the UV optical depth, and is mainly determined by the dust-to-star geometry instead of total dust mass, while βUV is set both by stellar properties, UV optical depth, and the dust extinction law. Overall, much of the scatter in the IRX–βUV relation of our sample is found to be driven by variations of the intrinsic UV spectral slope. We further assess how the IRX–βUV relation depends on viewing direction, dust-to-metal ratio, birth-cloud structures, and the dust extinction law and we present a simple model that encapsulates most of the found dependencies. Consequently, we argue that the reported ‘deficit’ of the infrared/sub-millimetre bright objects at z ≳ 5 does not necessarily imply a non-standard dust extinction law at those epochs. 
    more » « less